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Abstract— Wave propagation in a material containing distributed penny-shaped cracks was inves-
tigated. An improved approuach was developed for calculating the phase velocity and the attenuation
of ultrasonic waves. In this approach. the effects of neighboring cracks on a reference crack are
approximated by the effects of triads of double forces of strengths proportional to the crack
opening volumes, and located at the geometrical centers of the cracks. The averaged crack opening
displacements and crack opening volumes of the reference crack are split into two terms. The first
term corresponds to the quantitics induced by the interaction of the single reference crack with an
incident wave, while the sccond term represeats the interaction between this reference crack and
neighboring cracks. The averaged crack opening displacements are used in calculating the forward
scattering amplitude, from which the phase velocity and the coefficient of attenuation are sub-
sequently computed. The present analysis was limited to parallel cracks and to low frequencies. but
the principle can be used for more general cases. Since cruck interactions have been taken into
account. the analysis provides a better approximation than the stundard approuach proposed by
Foldy (1945, Phys. Rer. 67, 107-119), especially for intermediate and large crack densitics.

I. INTRODUCTION

Analytical considerations combined with experimental observations of the velocity and the
attenuation of ultrasonic waves in a damaged material, provide a means of characterizing
the damaged state of the material, Often, a decrcase in the velocity or an increase in the
attenuation of ultrasonic waves is an indication of stiffness degradation and/or loss of
strength of the material. In this paper, an advanced analysis of both the effective wave
velocity and the attenuation coetlicient is presented, for a material whose damaged state is
caused by a distribution of penny-shaped cracks.

Wave propagation in a material containing distributed defects (such as cracks, voids
or inclusions) often involves multiple scattering. In the independent scatterer approxi-
mation, the interaction between individual scatterers is ignored. This approximation is accept-
able for a dilute distribution or for weak scatterers ; it may not be good enough for a densc
distribution or for strong scatterers. A heuristic approximation for multiple scattering was
proposed by Foldy (1945), who obtained a closed form expression for the wavenumber
of the coherent wave (Foldy's equation). An improved approach, the quasicrystalline
approximation, which involves two-particle correlations was developd by Lax (1952). For
reasons of simplicity, the independent scatterer approximation and Lax's quasicrystalline
approximation have been generally used, see Waterman and Truell (1961), Twersky (1962),
Bosc and Mal (1974), Datta (1977), Varadan et ol. (1978), Datia et of. (1980), Sayers and
Smith (1983), Gubernatis and Domany (1984) and Varadan er al. (1985). For spherical
voids, special forms of two-particle correlations which give a better approximation for high
densitics of voids have been used by Varadan er al. (1985). However, for scatterers that are
of a complicated geometry. such as penny-shaped cracks, ellipsoidal voids or inclusions,
such corrclation functions do not yet exist.

In this paper, a novel method is presented which is based on the approach developed
by Sotiropoulos and Achenbach (1988) to account for the interaction effects between cracks.
For simplicity. the cracks arc assumed to be of the same size and to be oriented parallel to
cach other. The effects of ncighboring cracks on an arbitrarily selected crack (reference
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crack) are represented by systems of dipoles at the geometrical centers of the neighboring
cracks. The crack-opening displacements of the reference crack then split into two parts:
the first part is due to the incident wave in the absence of other cracks, while the second
part is induced by the presence of all other cracks. By taking configurational averages of
all quantities, the average forward scattering amplitude is calculated by substituting the
average crack-opening displacements into the far-field expressions of the scattered dis-
placements. Subsequent substitution of the average forward scattering amplitude into
Foldy's dispersion equation leads to an expression for the effective complex wavenumber.
The first two terms of this expression correspond to the standard form of Foldy's approxi-
mation. while the third term is an additional term which accounts for crack interaction
effects. The effective wave velocity and the coefficient of attenuation are then calculated
from the imaginary part and the real part of the complex wave number, respectively. Numer-
ical calculations show that for very small crack densities the results from the standard and the
modified approach agree, while for larger crack densities substantial deviations can occur.

The present paper is limited to low-frequency (long wavelength) scattering of time-
harmonic. plane longitudinal waves (L-waves). The principle used can, however, be
extended to moderate or high frequencies.

In Section 2, the scattering of a plane L-wave by a single penny-shaped crack is
reviewed. Results in the low-frequency range for the crack-opening displacements and the
forward scattering amplitude are summarized. A perturbation technique is applied to
obtain closed form solutions. The method used by Sotiropoulos and Achenbach (1988) for
calculating the multiple scattering effect for a distribution of coplanar cracks, is extended
in Section 3 to a 3-D distribution of penny-shaped cracks. In subscquent sections the
standard Foldy's equation and the improved one, are presented and numerical results are
given.

It is assumed in this analysis that the size of the cracks and the characteristic wave-
lengths are much larger than the characteristic dimensions of the microstructure of the
material, so that wave scattering by microstructures can be ignored.

Previous studics of wave propagation in a randomly cracked material can be found in
the papers by Garbin and KnopolT (1973, 1975a,b), und McCarthy and Carroll (1984),
who calculated the clastic moduli of a cracked medium ; and by O'Connell and Budiansky
(1974) who caleulated the wave velocity by using a self-consistent static approach. Wave
attenuation in a cracked material has been investigated by Piau (1979) and by Chatterjee
et al. (1980). The effects of anisotropy on the effective elastic moduli and attenuation have
been investigated by Anderson et al. (1974) and Piau (1980).

2, SCATTERING BY A PENNY-SHAPED CRACK
We consider a penny-shaped crack in an infinite, homogencous, isotropic and lincarly
clastic solid, as shown in Fig. 1. An incident time harmonic, plane longitudinal wave of the
form

Fig. 1. Penny-shaped crack.
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interacts with the crack and generates scattered waves. The amplitude of the incident wave
is unity, and its propagation direction is taken in the x,x, plane. Also, § is the angle of
incidence and k. is the wave number of the incident wave. We assume that the faces of the
crack will not touch. The boundary conditions on the faces of the crack then are

on(x)+0%5,(x) =0, xeA*, )

where o¥, represents the stress components due to the incident wave in the absence of the
crack, o%, denotes the stress components of the scattered wave induced by the interaction
of the incident wave with the crack, and 4* are the insonified and shadow sides of the
crack.

The scattered displacement field can be expressed by the following representation
integral

ue(x) = L ol (X1 Y)Auy)n, dS(y), x¢d*, (3

in which x denotes the position vector of the observation point: y denotes the position
veetor of the source point ; n, is the unit normal vector of 4 * ; and Aw, are the crack-opening
displacements (displacement jumps across the crack faces) defined by

Auy) = ujlyeur —tt)lyea s (4)

and a%, is the stress Green's function of the uncracked medium. The function 6, denotes
the stress components at position x due to a time-harmonic, unit point force applicd at
position y in the direction ;.

By substituting (3) into Hooke's law

apq = Cpykt Uk s (5)

and by using the boundary conditions (2), the following system of boundary integral
cquations can be obtained

d .
at(x) = --CM,(—JTJ; a,‘;,‘(x;y)Au,(y)n,dS(y), XeA*. (6)
BY] +

Here C, i is the elastic tensor which for an isotropic material is given by
Couit = A0py 01y + (0 i 0+ 0,1 00). 7

where 4, g are Lamé’s elastic constants and 4, is the Kronecker delta. Closed form solutions
to eqn (6) cannot be obtained and, in general, a suitable numerical method must be
employed. Among many studies of this problem we mention the works by Martin and
Wickham (1983). Lin and Keer (1987), Budreck and Achenbach (1988), and Nishimura
and Kobayashi (1989). Earlier studics of elastic wave scattering by a penny-shaped crack
have been presented by Robertson (1967), Mal (1970), Garbin and Knopoff (1973) and
Krenk and Schmidt (1982), who used integral transform and dual integral equations
techniques.

In this paper we restrict our analysis to the low-frequency range where approximate
solutions to eqn (6) can be obtained. This can be done, for example, by the perturbation
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technique proposed by Roy (1987). who investigated the elastic wave scattering by an
elliptic crack. In this procedure, the known and unknown quantities of eqn (6) are expanded
into a power series of ikt as

) k)™
en)=p Y ( T) T 057 (x, sin 0)", @)
m=0
G s (iky)" o
U:jk(xv )’) = z m! Ok (x Y) (9)
m=0 .
Au(x) = i (”;%)'"Auf'"’(x). (10)

m=10

where k¢ is the wavenumber of transverse waves: and ¢%,'. o/7 and Au{™ are expansion
coefficients. Substituting (8)-(10) into (6) and collecting terms of the same order in Ay,
yields a system of integral equations which can be solved analytically. Without going into
details we summarize in the following, the final results for the crack-opening displacements.
A detailed analysis has been given by Roy (1987).

In the low-frequency range. the crack-opening displacements have the form

Aue) = 5 "1 M) + Otk ra)* (I
m=A
where « is the radius of the crack, and
Aul™(x) = a'™MP(x), (12)
Aul(x) = (¢! "x, + bV x)P(x), (13)
W ?(x) = (a!? +hPxF+ COxF+dPx x0)P(x), (14)

A (x) = (@ P+ b + C Xy +d DV + e x4 SN G g xxd)P(x). (195)
Here

b(x) = Ja* = (xi+xd), (16)
and expressions for the coeflicients o™, 5™, ..., g™ in terms of the functions 6%, can be
found in Appendix 3 of Roy (1987). A(.cordmb to Roy (1987) and Mal (1972) this approxi-
mation is valid for at least k;a < 0.6. Figure 2 shows a comparison of V,/a*u, with
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Fig. 2. Crack-opening volume as a function of kva.
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numerically exact results which were obtained by a boundary element solution of eqn (6)
for normal incidence of a longitudinal wave of amplitude «,,. Here ¥, is the crack-opening
volume, i.e. the integral of Au,(x) over the area of the crack, see eqn (37). It is noted that
a very adequate approximate solution is obtained for values of kra up to kra = 1.

A representation formula for the scattered far-field (|x| > ly]) can be obtained by
simplifying eqn (3) with the approximation

Ix—yl = |x]-X"y. amn
where X is the unit vector along x. Introducing a spherical coordinate system
x;=Rsinfcos ¢, x;=Rsinfcos¢. x,= Rcosé, (18)

and substituting (17) into (3), the following results are obtained

u*(R.0.¢) = Fi(8. ¢)~eﬂ%@. I=R0,¢, (19)
where
k[,‘ forl=R ”
k= ke Fori=0.4: <0
Fe(0, ) = — ";L $(E=2x2sin® )1, (k sin 0) + &% sin 201 (k, sin 0)), o1}
Fy(0. ) = :1;,- {sin 20 I.(ky sin ) —cos 20 [.(kysin )}, (22)
ik p .
F,p(gg (b) = ,‘)“ cos 0 IS(k[‘ -11¢] 0), (23)
I 2 ffu
L(A) = 52 J J Auy(r, p) exp (—iir cos y)r dr de., 24)
< Jo Ju
I{) = :,; J“ J [Au(r, ) cos x +Auy(r, P) sin x]exp (—ilrcos gyrdrdd, (25)
- (i} (1]

1.(2) = ,)l J; J: [Au,(r. ) sin y — Auy(r, P) cos y] exp (—iircos Y)rdrdd,  (26)

N

y=0-¢. 27

In eqns (25) and (26), Aw, and Au, are the crack-opening displacements in the polar
coordinate system. In the case of L-wave incidence, only the forward scattered L-wave
amplitude Fp is important for the determination of the effective wave velocity (phase-
velocity) and the attenuation. Thus in the following, only F, is calculated explicitly. This
can easily be done by substituting the crack-opening displacements, eqns (11)-(16), into
eqns (21), (24) and (25). The final result for ¢ = 0 is
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kia® {(1—2k¥sin )* 43 sin 20 }
0' = A - ¥ 2(~ 2
F0.0 =57 k(1—x?) o3 28)
where
k : - - M
F,=a’-— (k) (@’ sin® O+ 2a! x sin @+ Sa; +a) +a})

10k~
itk a)’

P a; + Ok ay’]l. 2= 12, (29)

The coefficients & (i =0,1.....5; a = 1,2) are listed in Appendix B.

3. INTERACTION OF DISTRIBUTED PARALLEL PENNY-SHAPED CRACKS

Parallel penny-shaped cracks of the same radius a are considered, and it is assumed
that the cracks are randomly distributed. When the cracks are sufficiently closely spaced.
wave propagition in such a solid involves multiple scattering. In this section we extend the
technique of Sotiropoulos and Achenbach (1988) for multiple scattering of elastic waves
by an array of collinear crucks, to wave scattering by a volumetric distribution of penny-
shaped cracks. Special attention is devoted to the determination of the average crack-
opening displacements of a reference crack because these quantitics play a fundamental
role in estimating the scattered far-field.

I the total number of cracks in a bounded region is N, then the scattered displacement
ficld can be represented by [see also egn (3)]

N

N
wE(x) = Y, ol (X, YA (Y)n, dS(y). xe Y A, (30)

pe1Jd, pl

where A, denotes the insonified area and Au!” represents the crack-opening displacements
of the pth crack. The corresponding representation integral for the scattered stress com-
ponents is obtained by substituting egn (30) into Hooke's law. This results in

4 v X § d
a5(X) = Z C ;;kld“‘\;"f ol (X3 Y)Aul (y)n, dS(y), x¢ Z AL 3n
X Jag

p=1 p=1

We could follow the sume procedure as discussed in the last section to obtain a system of
3N integral equations, by letting x = A4, and by considering the stress-free boundary
conditions on the pth crack. However, for large N this method becomes impractical for the
determination of the crack-opening displacements because of the enormous computational
effort. Here we will use the method proposed by Sotiropoulos and Achenbach (1988) to
obtain an approximate solution for the crack-opening displacements.

The basic idea of this approximation is to split Au? into two parts

N

Aul(y) = &l (y) + Y Aul(y), (32)
P
anp

in which the first part denotes the crack-opening displacement caused by the incident
wave in the absence of all other cracks, and the second part represents the crack-opening
displacement due to the presence of all other cracks. In particular, the term Al represents
the influcnce of the gth crack on the crack-opening displacements of the pth crack. Sub-
stituting eqn (32) into eqn (31) and applying the boundary conditions on the pth crack,
yields the following separate equations
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é :
leg;"[ ok (x: YA (y)n, dS(y) = —a5i(x). xeA;, (33)
X Jay

5

Cont = f a5, (x; Y)A(y)n, dS(y)
CXp Jay
(? G . q +
= —Ciu 0—.\', . oo(X:Y)Aul(y)n; dS(y). xeAd;. (34)

The integral equations involved in (33) can be solved for low frequencies by the use of the
perturbation technique as discussed in the last section, and the solution for A«w/” is given
by eqns (11)-(16). On the other hand. eqn (34) cannot be solved alone since both A« and
Aul are unknown quantities. However, if we apply the same procedure for the remaining
(N — 1) cracks. we obtain additional equations governing Aw?’, Au! (¢ #p.q=1.2.....N)
which in principle. can be solved. Unfortunately. this procedure becomes extremely cum-
bersome for a large number of cracks. Here, we will not use this method. Instead, we try
to solve eqn (34) in an approximate, but simple manner.
For convenience, we write eqn (34) in the form

¢ .
Cr a}} J;‘ "f;k(xl Y)Aul(y)n, dS(y) = ~d,(x). KEA;- (35
where

) i
dy(x) = Cm/‘;r f o (X y)Aul(y)n, dS(y)
nYi ,4:

% .
> Cou 0‘\, % (X Y, f Aut(y) dS(y), (36)
Ay ,‘;

in which ¥ denotes the position vector of the center of the ¢-th crack. The tractions —& ),
can be interpreted as the tractions on the surface of the pth crack, induced by a system of
continuously distributed dipoles over the arca defined by the surfuce of the ¢th crack. Next,
by the second of eqns (36), the continuously distributed dipoles of the ¢th crack are replaced
by an approximation to their resultants at the geometrical center of the ¢th crack, by taking
the stress Green's function outside the integral. This approximation is expected to be
reasonable if the cracks are not too closely spiced. The crack-opening volumes

Vi = f  Aul(y)dS(y), (37

4

in eqn (36) arc unknown « priori and they have to be determined.

The integral equations involved in (35) describe the interaction of a system of dipoles
with the pth crack. The crack-opening displacements Aw?™ are induced by the surface
tractions on the gth crack, —&;,, which have the same amplitude but opposite sign as the
stresses on Af, produced by a system of dipoles in the absence of the pth crack. To handle
eqn (35). it is convenient to rewrite d,, in the form

Gy =03 V= 0;, vy +a§l V'S'HT;: s, (38)

where V{ are the crack-opening volumes of the gth crack defined by eqn (37), and ¢%, are
given by
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¢
o4 = CMI“@\' To(x:¥yY). (39)
X

TS =alyn,. (40)

The decomposition in eqn (38) allows us to use the superposition principle to obtain the
solution for Auf?. If x{; are the crack-opening displacements of the pth crack caused by the
tractions —a*%, (r.u = 1,2, 3). that is to say if 2%/ are solutions of the integral equations

C}fu;‘_‘f U'S'k(X; Y2 (y)n; dS(y) = —o%(x). u=12.3. 41
X Jag

then the solution to Au’? can be written as
Al = alt VY, 42)

where ¢ indicates the gth crack and no summation over repeated ¢ is taken. In general, the
tractions ¢'%,(x) induced by dipoles on the pth crack are not uniform. To make our analysis
as simple as possible, we replace ¢%,(x) by uniformly distributed tractions on 4} with
magnitudes equal to the values of 6%,(x) at the geometrical center, x*7, of the pth crack

a%(x) = a%,(x'"). (43)

With this approximation, the boundary integral equations of (43) have been solved for low
frequencics by the perturbation technigue outlined in the last section. The solutions for
al? have the same forms, eqns (11) -(16), as for the case of incident waves. The coeflicients
oceurring in (11)-(16) arc different, but they are not given here for the sake of brevity.

In summary, the crack-opening displacements An? of eqn (32) can be approximated
by

N
Aul = A+ Y afi Vi, (44)

g=1
q#rp

where V4 still remains unknown. Integration of eqn (44) over 4, yiclds, however, the
corresponding approximations for the crack-opening volume

Al
Vi ¥ty )y v, (45)
Vo
in which
W =f 2 (y) dS(¥) (46)
A;

are the crack-opening volumes of the pth crack, due to the tractions a%, produced by dipoles.

Itis still too complicated to find Aw; for all cracks. A natural way instead is to determine
the average crack-opening displacements {Au, ), as well as certain associated quantities. In
the usual manner the average of a random function f(x,.x,.....x,), which is dependent
on m random variables x; (i = 1,2, ....m), is defined as
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(f)-—-j I j S X LX) P(X ) X X ) A dxs Lo d,, “7

where p(x,.x.,....x,) is the probability density function satisfying the normalization
condition

J. J. J plxi.xa, ... X,)dx,dx,...dx, = 1. (48)
The average of Auf can then be written from eqn (44) as

By = B+ T Cal Ve, (49)
t

q=
q*p

In what follows, we assume that all cracks are identical (with radius a) and parallel.
We further assume that the cracks are randomly distributed so that all positions of the

cracks are equally probable. Under these assumptions, we can approximate af and VY as
two independent variables, so that

it Vid = (i) (Vi (50)
In addition, since all cracks are identical and parallel, the following equality can be used
VD =LV, (51
Thus, cqn (49) can be recast into the form
{Au) = Au) +nda, > (V). (52)
where # is the number of cracks per unit volume, and the superscripts p and pg have been
omittted for simplicity.

Integration of (52) over A, results in

(Vn> = V?+"<ﬂiu><Vu>’ (53)

in which
Bud = J; (2. (y)) dS(y). (54)

Equation (53) can be rewritten as
V> =A4,'V7. (55)
Here A4,,' denotes the inverse matrix of A,, which is given by

A, = (slu—"(ﬂlll)‘ (56)

Clearly, eqn (53) can also be established by averaging eqn (45) and by using similar
approximations to (50) and (51). Substitution of eqn (55) into (52) yields the following
expression for the average crack-opening displacements :
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Auy = Aud +nla, )y A" V7. (57)

We mention again that the average crack-opening displacements of an arbitrarily
selected crack can be split approximately into two parts, as given by eqn (57). The first part
represents the crack-opening displacements of the reference crack caused by the incident
wave in the absence of all other cracks, while the second part describes the interaction
effects of the cracks on the crack-opening displacements of this reference crack. It follows
that the average forward scattering amplitude for incidence of an L-wave on this crack can
also be split into two terms

CFry = FR+<F¥) (58)

where Fy is given by eqn (28) and eqn (29), while {F%) can be obtained by substituting
the second term of eqn (57) into eqns (23). (26) and (27). For ¢ = 0, this yields

(Fi> =

N i(kyaya® [(1=2xk*sin 9) 4x* sin 20
3-2&2

= T P~ 5o P }nA,;'r?. (59)

where a'f,, o, are defind by eqn (39). and F}is given by

kpa)® .. . 2 itk a)’
F*=qa,~ (I ('):) (@0x7sin* 0423w sin 0+ 5a@; +a. +a}) - —(6::(?— a, + Ok a)’].

(60)

The coeflicients @, (i = 0,1,....5: 2 = [,2) arc listed in Appendix. C. The quantitics 7,
By and A" can be calculated by substituting Au? into (37), <a,,> into (54). and by
subsequently using cqn (56).

4. EFFECTIVE WAVE VELOCITY AND ATTENUATION

For elastic wave propagation in a cracked solid, the wave velocity is frequency depen-
dent and the amplitude of the wave decays with advancing distance in the propagation
direction. A rigorous theory tor the determination of the phase velocity and the coeflicient
of attenuation is not yet available for the general case. In our analysis, the well established
approach of Foldy (1945) and Lax (1952) for elastic wave propagation in solids containing
distributed voids or inclusions, is applied in a further improved form. It is assumed that no
correlations between individual scatterers exist. The effective wavenumber £, according to
this approach, can then be written as

(kra)® = (kpa)® +4ned Fr(kLa)). 6l1)

where a is the radius of the penny-shaped cracks, & is the wavenumber of the L-wave in
the uncracked medium, {F(kLa)) is the average, forward scattered L-wave amplitude, and
£ is the crack-density parameter defined by

£=na’, (62)

in which n represents the number of cracks per unit volume. In general, eqn (61) has to be
solved by iteration since (61) is an implicit equation for the determination of £ a. As a
reasonable approximation to eqn (61), the following equation, due to Foldy (1945), is used
in the present analysis
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(kLa)* = (k a)* +4ne Fe(kpa)). (63)
The simple form of eqn (63) allows us to calculate the complex wavenumber &, a without

iteration. The real and imaginary parts of £, a are related to the effective wave velocity and
the wave attenuation by

ELG - CL
Re (f:“"‘)-“ )
a
Im(kLa) = 5% (65)

where ¢ is the L-wave velocity in the uncracked medium, &, is the L-wave velocity in the
cracked medium, and = is the coefficient of attenuation.

In the standard approximation, { Fz) is replacd by F/a where F} is given by eqn (59).
This means that the cracks do not have any interaction. Here we modify this approximation
by setting

(Fr> = Frla+{F¥)/a. (66)
where (F3%) is given by eqn (59) and eqn (60). Substituting eqn (66) into eqn (63) leads to
(KLa)® = (kpa)® +4ne(Fafa) +4ne(FLja). (67)

Because interaction effects between cracks are included in eqn (67), it is believed that the
maodified approximation is better than the standard one, especially for moderate and
larger crack densitics. In fact, the third term on the right-hand side of eqn (67) s a higher
order termin e

dne(F2la) ~ &2, (68)

since F} is proportional to & [sce eqn (59)]. For small ¢, this term can be ignored in
comparison with the second term of eqn (67). Howcever, for moderate or large ¢, the
contribution of this term may be of importance.

5. NUMERICAL RESULTS AND DISCUSSIONS

Numerical calculations based on eqn (67) have been carried out for a solid permeated
by parallel penny-shaped cracks. Poisson’s ratio of the uncracked material was chosen as
173. The probability density p is a function of the random variables R, f, y which describe
the relative crack positions. Thus, p(R, B, ) represents the probability density of finding a
crack with the center defined by the spherical coordinates (R, f.7), see Fig. 3. In this paper

crack q

4

crack p

Fig. 3. Relative position of two paraliel cracks.
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p‘(R)

0 Ramin Ranax R
Fig. 4. The distribution function p,(R).

we consider the case that the crack center distance R and the relative crack position angles
8.7 are randomly independent. so that

P(R.B.7) = pi(R)p:(B.7). (69)

In the present paper, p,(R) is selected as a uniform distribution function with R, = 2.5¢
and R, = 4.5a (see Fig. 4), i.e.

{
e min S R S X
PR = { R R” : (70)
0 otherwise,
while p,(f.7) is taken to be completely random, i.e.
i
prBy) =55, 02t 0Ky an

2"

With this specification of the probability density function, the average of a quantity can be
caleulated by using egn (47).

Figure 5 shows the dependence of the velocity ratio ¢ /e. on the crack-density par-
ameter ¢ for several dimensionless wavenumbers Apa, where &y is the wavenumber of
transverse waves in the uncracked medium. The case € = 0 corresponds to a medium
without cracks, when &/ is unity. The presence of cracks reduces the wave velocity as
expected. The effective wave velocity decreases with increasing crack density. For fixed
crack density, ¢ decreases as Apa increases from 0.3 to 0.9. Calculutions based on the
standard approximation, that is without the lust term in egqn (67), have also been carried
out. It was found that the standard approach generally underestimates the effective wave
velocity. However, the differences in & /¢, from both approaches are so small that they
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Fig. 5. Phase velocity versus crack density for normal incidence of an L-wave,
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cannot be distinguished graphically, at least in the frequency range considered here. Thus,
only the results of the modified approximation are shown in Fig. §.

The coefficient of attenuation of L-waves is shown in Fig. 6 versus the crack density
¢. Both results from the standard and the modified approximation are shown. For small
wave numbers, for example kya = 0.3, the standard approximation underestimates the
attenuation, while for larger wavenumbers it overestimates the attenuation. For the case of
small crack density both results agree very well, while for increasing crack density, the
difference beteen the results for the two approaches becomes larger and larger.

The dependence of the effective wave velocity and the attenuation on the dimensionless
wavenumber is shown in Fig. 7 and Fig. 8. The effective wave velocity decreases with
increasing wavenumber in the frequency range considered, though this change is not sub-
stantial. The coefficient of attenuation increases as kya increases. The results show again
that the standard independent scatterer approximation and the modified one yield the
same results for dilute crack distribution, while for dense crack distributions the standard
approach underestimates the attenuation for low frequencies (say kra < 0.4) and over-
estimates the attenuation for high frequencies.

Figure 9 shows the variation of the effective wave velocity with the angle of incidence.
for several selected values of £ and kta. The effective wave velocity is smallest for @ = 0°
(normal incidence of the L-wave) and largest for 0 = 90° (grazing incidence of the L-wave).
It is intcresting to note that even when the L-wave propagates parallel to the cracks, a
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0.0250 ===
0.0225 o

0.02001 k,a =08 .
0.01751
0.01501
0.01254
0.0100 -
0.0075 1
0.0050 1
0.00254.
0.0000

aa

0 10 20 30 40 S0 60 70 80 90
6 ( Degree )

Fig. 10. Coeflicient of attenuation versus the angle of incidence for an L-wave.
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reduction in the effective wave velocity is induced. [n Fig. 10, the attenuation is plotted
versus the angle of incidence of the L-wave. In contrast to the effective wave velocity, the
attenuation has a maximum at 8 = 0°, and it decreases with increasing 8 to a minimum at
8 = 90°. As expected. the cracks cause maximum effects of interfering with wave motion
when the surfaces of the cracks are perpendicular to the direction of wave propagation.

In concluding, we note that a limitation of the theory presented herein is in the range
of validity of the low-frequency scattering theory for a single crack. The results of Fig. 2
suggest that this theory is valid for kra < 1.0. Hence, for illlustrative purposes, the results
are presented in Figs 5-10 for 0 < kra < 1. The general approach of this paper can,
however. also be used for intermediate and high frequencies. in conjunction with a suitable
numerical technique (BEM. FEM, etc.) for calculating the crack-opening displacements.
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APPENDIX A: THE STRESS GREEN'S FUNCTION

The stress Green's function ¢%(x:y) denotes the stress components at x caused by a point force of unit
amplitude in the k direction, applied at y. For a homogeneous. isotropic. lincarly elastic and unbounded solid the
stress Green's function has the following explicit form

R
6, = é(GT-G‘)J«,& + {1 =258, G4 + 0,67 +5 .G, (Al

where
G* = explik,R)/4nR. x=L.T, {A2)
R =|x-yl, (A3)
&=k, k. (A

and k.., k¢ are the wave numbers of longitudinal and the transverse waves. respectively,

APPENDIX B: THE COEFFICIENTS «, OF EQN (29

The coctlicients a) of eqn (29} are

al =1, 81}
ay = 2xsin ), (BY)
wl = YAk {r) ~ ¥ sin 0], {(BY)
al = LI5ho{K) +22x%sin* 0], (14)
at = L15hy(K) - 2x%sin 0, (85)
2
= - 3;}!,{&'). (B6})
o= —1, (87)
4x(3~26%)
P kil BY
RERE TP REpNCT (B8)
i 4x
LR N e IR = B)B 2 ydn? b5, BY
a3 16{“ b,+45(k_2_”l(7k 63b; + (&7 = D 4 3) s}} (BY)
2
Ve S [O=TNYh, + 26N (K = 1), B0
uy 45“_"‘_)[( N3y 20 (K7 - )by (Bi0)
{
$ o e (4K = 3)hy 4+ 28R - 1) (T = Db L Bl
ai 45(1__&_.){( w3y 4 B 15) (7 - )b {B11)
16(3+2x%)
s 160642 BI2
T 5320 (BL2)
in which
24kt
B e e Bi3
by 23-2x7)° (B13)
44 3t
PR v e ¢ sin’ A 814
by O xisin® @ (B1y)
4411
AL BIS
by 8(2x% -3)’ (813
kit
ho(x)=3~———-————————“ N) N {B16)

2(1 = x%)
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32k° 40k + IS5+ 8

hi(x) = BT (B17)
APPENDIX C: THE COEFFICIENTS a4, OF EQN (58)
The coefficients d, of eqn (58) are:
al=1 (Ch
a, =90, (C2)
di = -"u'o(’\')_rlg. (C})
a, = a; = hy(x)9. (CH
hl
@ = - =hK). (C5)
(71:' = -1, (C6)
ar=0. {og)]
ai= b b+ —4—'-[(7x:—6)h‘+(l\':—l)(4x:+3)h + 1T =N~ 1by) (C8)
T 1 BN M [l gl i e s
i
V= TN h IR — k= 2
a; 45“‘_'\.:)[(9 TR+ 2 (KT = Db+ LR = DB Dby, C9)
1
B = e [(IKE— 3B 4 U8R — 2 1 — 2
=35 _N,)IHA b+ U8R — ISHKT = Dby + LK = DB =Nh,]. (C10)
L, 63+ et
B = Gy €ty
where irg(x), iy (k). By, by and by can be found in Appendix B, while by is given by
x? a'\,
b, T (C12)

= =3 o,
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